36 research outputs found

    Size effects and idealized dislocation microstructure at small scales: predictions of a phenomenological model of Mesoscopic Field Dislocation Mechanics: Part I

    Full text link
    A Phenomenological Mesoscopic Field Dislocation Mechanics (PMFDM) model is developed, extending continuum plasticity theory for studying initial-boundary value problems of small-scale plasticity. PMFDM results from an elementary space-time averaging of the equations of Field Dislocation Mechanics (FDM), followed by a closure assumption from any strain-gradient plasticity model that attempts to model effects of geometrically-necessary dislocations (GND) only in work-hardening

    Optimum PID Control of Multi-wing Attractors in A Family of Lorenz-like Chaotic Systems

    Full text link
    Multi-wing chaotic attractors are highly complex nonlinear dynamical systems with higher number of index-2 equilibrium points. Due to the presence of several equilibrium points, randomness of the state time series for these multi-wing chaotic systems is higher than that of the conventional double wing chaotic attractors. A real coded Genetic Algorithm (GA) based global optimization framework has been presented in this paper, to design optimum PID controllers so as to control the state trajectories of three different multi-wing Lorenz like chaotic systems viz. Lu, Rucklidge and Sprott-1 system.Comment: 6 pages, 21 figures; 2012 Third International Conference on Computing, Communication and Networking Technologies (ICCCNT'12), July 2012, Coimbator

    Modeling dislocation sources and size effects at initial yield in continuum plasticity

    Get PDF
    Size effects at initial yield (prior to stage II) of idealized micron-sized specimens are modeled within a continuum model of plasticity. Two different aspects are considered: specification of a density of dislocation sources that represent the emission of dislocation dipoles, and the presence of an initial, spatially inhomogeneous excess dislocation content. Discreteness of the source distribution appears to lead to a stochastic response in stress-strain curves, with the stochasticity diminishing as the number of sources increases. Variability in stress-strain response due to variations of source distribution is also shown. These size effects at initial yield are inferred to be due to physical length scales in dislocation mobility and the discrete description of sources that induce internal-stress-related effects, and not due to length-scale effects in the mean-field strain-hardening response (as represented through a constitutive equation)
    corecore